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A multiphase-field model previously proposed by the authors is reformulated in a thermodynamically con-
sistent form and extended to multicomponent systems. The phase-field and diffusion equations, derived from a
free energy functional, are compared to those postulated in the previous model in the limit of a binary alloy.
The constraint of local quasiequilibrium, which is equivalent to the postulate of equal diffusion potentials for
coexisting phases, is deduced from a variational principle. Solute partitioning and evaluation of the thermo-
dynamic driving force for phase transformation are done by numerical minimization of the free energy of the
multiphase system using the Calphad approach. A local extrapolation scheme which enhances the computa-
tional efficiency for complex numerical simulations of technical alloys is presented. It is shown that this
extrapolation scheme, used in a “multibinary” approximation, reproduces the former model without restriction
to dilute solutions.
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I. INTRODUCTION

The application of the phase-field method for simulating
microstructural evolution of technical materials and pro-
cesses requires a model approach combining multiple phases
and multiple components for nonisothermal conditions in a
reliable but computationally efficient way. To achieve this,
the previously proposed multiphase-field approach with an
integrated concept for solute diffusion �1� has been reformu-
lated in a thermodynamically consistent form and extended
to multicomponent alloys. Two major advantages of the
model are highlighted: �a� special treatment of the diffuse
multiphase interfacial area allows computational stability
and efficiency and �b� the model can easily be used in con-
junction with thermodynamic databases.

Many phase-field models for alloys are based on the clas-
sical phase-field approach of Wheeler et al. for binary alloys
�2�, which starts from the double-well description of free
energy densities for pure materials. To enable the extension
to binary alloys, a continuous composition field c is defined
over the interface, and the free energy density g of the alloy
is extrapolated as a mixture in composition of the energy
densities of the pure materials. While providing simplicity,
this approach has serious disadvantages in applied numerical
simulations. This is because the mixed interfacial-chemical
contributions do not allow scaling the interfacial width �
independently of other parameters as it is necessary for ap-
plication in the thin interface limit. In this limit the interface
width is large compared to the atomic distance a, but small
compared to the scale of the microstructure r̄,

a � � � r̄ . �1�

Within the thin interface region different phases forming
the interface need to be described as diffuse, i.e., two or

more different phases ��� coexist locally. In models in which
only a single continuous composition c is defined for the
whole interfacial phase mixture, it is assumed that all coex-
isting phases are of equal phase composition �c��=c, which
implies unequal phase diffusion potentials ��̃�=

�g�

�c�
�� �̃.

��̃� is here called phase diffusion potential, first to distin-
guish it from the diffusion potential of the total phase-
mixture �̃= �g

�c , and second from the thermodynamically
defined chemical potential ��=

�G�

�n�
. g� and G� denote the

chemical free energy density and the total chemical free en-
ergy of phase �, respectively; n� denotes the number of
moles in the solute component.� In the classical model, even
in total equilibrium, the phase diffusion potentials are not
equal ��̃�� �̃�� and not constant ����̃���0� throughout the
interface. An additional interfacial contribution to the chemi-
cal free energy density g is required to compensate for the
difference in phase diffusion potentials and thus allow the
diffusion potential of the phase mixture �̃= �g

�c , whose gradi-
ent is the driving force for solute diffusion, to become con-
stant throughout the interface in equilibrium. A possible
physical interpretation of this mixed interfacial-chemical free
energy contribution is still under debate for models, in which
the interface width is identified by the true physical interface
width �3�. However, for applied simulations, in which
the interface width presents a numerical parameter much
larger than the physical interface width, this contribution be-
comes unrealistically large, leading to numerical instabilities
and quantitative errors �see also Refs. �1,4,5� for a detailed
discussion�.

To overcome this disadvantage, we proposed in Tiaden et
al. �1� to assume at any point within the interfacial area a
mixture of phases of separate phase compositions �c���c,
fixed by a quasiequilibrium condition. It was later shown by
Kim et al. �4� that this condition is equivalent to the condi-
tion of equal diffusion potentials ��̃�=

�g�

�c�
�= �̃ for locally

coexisting phases. In the present paper, we will derive this
constraint—extended to multiple phases and components—
from a variational principle. The free energy density will be
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clearly separated into an interfacial and a chemical contribu-
tion. It will be shown that the gradient of phase diffusion
potentials ��̃�

i determines the driving force for solute diffu-
sion, while the difference in chemical potential between the
phases ���

i −��
i � is the chemical driving force for phase

transformation. In contrast to the classical model, all phase
potentials will become constant and uniform in equilibrium.

A drawback of the quasiequilibrium constraint is that it
must be solved by complex thermodynamic calculations,
minimizing the free energy of the multicomponent alloy nu-
merically, e.g., by the Newton-Raphson method. Because it
is a local constraint, it must be evaluated at any point and for
each time step, which requires high computing times. Be-
cause of this, and because not many thermodynamic data-
bases were available at that time, we previously �1� deter-
mined the quasiequilibrium compositions using extrapolated
phase diagram data. Now, with increased computing power
and the assessment of a greater quantity of data, we are able
to perform the quasiequilibrium calculations at run-time.
However, local extrapolation is still proposed as a way of
reducing the frequency of online calls.

This paper aims to review the thermodynamic principles
of the approach in a comprehensive way and precisely define
the linearization procedure and extrapolation scheme for
multicomponent multiphase problems in alloys. The “multi-
binary” extrapolation scheme used in the first approach will
be discussed as a limiting case.

II. THE FREE ENERGY FORMULATION

We start from a general model of the free energy as an
integral of the density functional over the domain �. The
density functional is a function of multiple phase fields ����
which gives the local fraction of the phases, and the phase
composition fields �c���, explained in more detail later. �The
brackets � � denote all phases � and not an individual �.� The
density functional is split into the interface energy density
and the chemical free energy density,

F�����,�c���� = �
�

f intf������ + fchem�����,�c���� . �2�

Since the width of the diffuse interfacial region in our model
is regarded as a mathematical entity rather than a physical, it
must be that neither the total chemical free energy �integral
of the chemical free energy density� nor the total interface
energy �integral of the interface free energy density� depend
on interface width.

A. The interfacial free energy density

The interfacial part of the free energy density is expanded
in the phase-field variables ��=1,. . .,	 of the system with 	
phases �9�, obeying the constraint ��=1

	 ��=1,

f intf = �
�,�=1

	
4
��

���
	−

���
2

�2 ��� · ��� + ����
 . �3�


�� is the interface energy between phase � and phase � in
a multiphase junction with 	 phases or between grains of the

same phase but different orientations. For simplicity in the
notation we set 
���0. ��� is the interface width. The spe-
cial formulation is chosen to underline the scaling invariance
of the total interface energy to the interface width. The
expression in large parentheses is a dimensionless measure
of the interface structure. A double obstacle potential is used.
For convenience, the cutoff against values ���0 and
��1 of the phase field is not written explicitly. The chemi-
cal part fchem will be defined after a short review of finite size
multicomponent multiphase systems in the next section.

B. Free energy density of a multicomponent multiphase
system with finite size

To deduce the chemical part of the density functional, we
start with a thermodynamic description of a multiphase mul-
ticomponent system of finite size, independent of the phase-
field description. The Gibbs free energy can be described by
the chemical potentials ��

i of each component i in phase �
and the respective number of moles n�

i ,

G = �
�=1

	

�
i=0

k

��
i n�

i with ��
i = 	 �G�

�n�
i 


n
�
j�i,T

. �4�

Introducing k+1 solute compositions c�
i individually for

each phase �, we can write

G = �
�=1

	

n��
i=0

k

��
i c�

i with c�
i=0,. . .,k =

n�
i

n�

. �5�

The solute compositions c�
i , which here actually denote mole

fractions, are not independent parameters but must fulfill the
constraint �i=0

k c�
i =1. Therefore, the number of k+1 mole

fractions c�
i=0,. . .,k is reduced to k independent mole fractions

c�
i=1,. . .,k by selecting a solvent component 0,

G = �
�=1

	

n�	��
0c�

0 + �
i=1

k

��
i c�

i 
 �6�

= �
�=1

	

n�	��
0 + �

i=1

k

�̃�
i c�

i 

with �̃�

i = ��
i − ��

0 . �7�

The term in parentheses in this last equation defines the mo-
lar free energy density of phase �, and �̃� is its partial de-
rivative with respect to composition,

g� = ��
0 + �

i=1

k

�̃�
i c�

i , �8�

�̃�
i = ��

i − ��
0 = 	 �g�

�c�
i 


c
�
j�i,T

. �9�

The potential �̃�
i , whose gradient determines the chemical

driving force for solute diffusion within a phase, is here
called phase diffusion potential to distinguish it from the
chemical potential ��

i defined in Eq. �4�. It shall be men-
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tioned that deduction of the chemical free energy together
with the following derivation of the diffusion equations in
Sec. IV A are treated in this paper for substitutional systems
only. It can be done in the same way for interstitial systems,
but with an adapted set of independent composition variables
�and the corresponding diffusion potentials�, as has been
shown by Cha et al. �6�. Division of the free energy G by the
total number of moles n leads to the molar free energy den-
sity of the multicomponent multiphase system,

g =
1

n
�
�=1

	

n�g��c�
i � with g� = ��

0 + �
i=1

k

�̃�
i c�

i �10�

= �
�=1

	

p�g��c�
i � with p� =

n�

n
. �11�

In this final formulation, p� denotes the phase fractions, and
the molar Gibbs free energy density of a multicomponent
multiphase system is described by the sum of the free energy
densities of the individual phases g��c��� weighted by these
fractions. The free energy densities of the individual phases
depend on the individual phase compositions c�

i . The total
molar fraction of a component i in the whole system can be
evaluated by

ci =
ni

n
=

1

n
�
�=1

	

n�
i = �

�=1

	

p�c�
� . �12�

C. Deduction of the chemical free energy density
for the phase-field model

In our phase-field model we assume an equilibrated mul-
ticomponent multiphase system, as described in Sec. II B. It
is, however, of infinitesimally small size at each location x�.
The phase fractions of the phases in this infinitesimally small
system are given by the local values of the phase fields
���x� , t�. According to Eq. �10�, the chemical part of the free
energy density functional for multiphase systems is formu-
lated as the sum of the free energy densities of the individual
phases f� weighted by the respective phase fields,

fchem���,c��� = �
�=1

	

���x�,t�f�„c���x�,t�… . �13�

Two aspects of this approach, that distinguish it from the
classical model �2�, shall be emphasized. First, the free en-
ergy densities of the individual phases f� are related to indi-
vidual phase compositions c��, which are—as will be shown
later—constant over the interface in equilibrium, in contrast
to the continuous mixture composition c�. Second, linear
weighting with the phase-field parameters �� ensures that
the total chemical free energy as the integral over the whole
system is independent of the interface description. Thus, the
width of the diffuse interfacial region does not enter the
chemical part of the free energy. According to standard thin
interface asymtotics �7,8�, it can be selected to be much
larger than the atomistic interface width, but small compared
to the scale of the microstructure under consideration, still

representing the physics on the microstructural scale.
Volume free energy densities are suitable for describing

the total free energy functional. However, for evaluation of
the chemical contribution in conjunction with thermody-
namic databases, molar Gibbs free energy densities are
preferred. If we neglect volume changes and assume that
the molar volumes of all phases are equal and approximated
independent of composition v�

m=vm, the volume free energy
densities can be replaced by molar Gibbs free energy
densities,

fchem���,c��� =
1

vmg���,c��� , �14�

g���,c��� = �
�=1

	

��g��c��� . �15�

Molar Gibbs free energy densities are parametrized in
Calphad databases for many alloy systems, thus providing a
sound basis of realistic and quantitative calculations. The
Gibbs free energy densities g� are functions of the local
phase composition fields c���x� , t� � (c�

i �x� , t� , . . . ,c�
k �x� , t�).

These phase compositions c�� are nonconserved parameters
which in this formulation are no independent parameters but
in analogy to Eq. �12� are linked by the mass balance to the
conserved and continuous mixture composition c�,

c��x�,t� = �
�=1

	

���x�,t�c�
� �x�,t� . �16�

To use the phase compositions as independent parameters,
we integrate the mass balance into the functional by an ad-
ditional Lagrange term,

g���,c�,c��� = �
�=1

	

��g��c��� + �̃�	c� − �
�=1

	

��c��
 . �17�

The components of the Lagrange multiplier �̃� are the mix-
ture diffusion potentials, defined by

�̃i = 	 �g

�ci

cj�i,T

. �18�

From Eq. �14� we find, that the mixture diffusion potentials
are linked to the individual phase diffusion potentials by

�̃i = �
�=1

	

���
j=1

k

�̃�
j �c�

j

�ci
. �19�

Evaluation of the mixture diffusion potential requires another
constraint for the phase compositions. In the following we
assume that local mass transport between coexisting phases
within the infinitesimally small volume at position x�, can
occur instantaneously. The phase compositions of all phases
and components can thus adjust, leaving the phase field and
the mixture compositions constant, but changing the diffu-
sion potentials until a partial minimum of the local free en-
ergy is reached in each infinitesimally small volume. This
partial minimum, which we call quasiequilibrium, is reached
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if independent variation of the functional with respect to the
c�

i equals zero,

�g���,c�,c���
�c�

i = ��

�g�

�c�
i − ���̃ = 0. �20�

It leads to the constraint that all phase diffusion potentials
equal the mixture diffusion potential and thus implicitly
equal each other,

�̃� � = �̃� . �21�

It shall be mentioned that due to this constraint in total equi-
librium all phase diffusion potentials ��̃�

i � and all phase com-
positions �c�

i � become constant throughout the interface.
By the quasiequilibrium constraint, the phase composi-

tions become functions of the phase-field parameters and the
mixture concentrations. Using Eq. �21� together with �6�, the
functional can alternatively be written as

g�����,c�� = �
�=1

	

���g��c��� − �̃�c��� + �̃� c� �22�

= �
�=1

	

����
0�����,c�� + �̃� c� , �23�

where ��
0 is the chemical potential of the solvent component.

The name quasiequilibrium has been chosen, because the
system does not need to be, even locally, in a real state of
equilibrium. During phase transformation, diffusion poten-
tials are locally equal, but the chemical potentials still differ
from each other, determining the chemical driving force for
phase transformation, as can be visualized by the well-
known parallel tangent construction. The derivation of the
respective equations is presented in the following sections.

III. THE MULTIPHASE-FIELD EQUATIONS

A. Derivation from the free energy functional

The multiphase-field equations are derived for general
multiphase transformations in multiple junctions �9�:

�̇� = − �
�=1

	̃
M̃��

	̃
	 �F

���

−
�F

���

 �24�

with the interface mobilities M�� and the interface width set
equal for all interfaces ���=� for simplicity. 	̃ is the number
of phases which are locally coincident, i.e., 	̃=1 in the bulk,
	̃=2 in dual interfaces, 	̃=3 in triple junctions, and so on.
Correspondingly, the sum in Eq. �24� must run only over
phases whose local phase-field parameters ���x�� have values
between �but not equal� 0 and 1. For a thorough discussion,
see the Appendix in Ref. �9�. The special form of Eq. �24�
with antisymmetric variations of F is chosen to decouple the
general multiphase problem into a set of dual interactions.
Each dual interaction now can be attributed by its own mo-
bility. Moreover, this formulation ensures the force balance
at multiple junctions and the constraint that all phase fields
must sum up to unity. It is easy to check that the formulation

reduces to the standard formulations of the phase-field equa-
tion in dual interfaces �	̃=2�. Applying Eq. �24� to the free
energy functional deduced in Sec. II A, Eq. �3� leads to

�̇� = �
�=1

	̃
M��

	̃
	�

�=1

	̃

�
�� − 
���I� +
�2

8�
�G��
 , �25�

I� = �2�� +
�2

�2 �� and M�� = M̃��

8�

�2 . �26�

I�� is the generalized curvature term and �G�� comprises
the derivative of the chemical free energy with respect to the
phase-field variables, which we call thermodynamic driving
force, described in detail in the next section.

B. The thermodynamic driving force

The local deviation from thermodynamic equilibrium
�G�� is found to be consistent with the thermodynamic driv-
ing force deduced from a parallel tangent construction:

�G�� = − 	 �

���

−
�

���

 fchem �27�

=
1

vm �g��c��� − g��c��� − �̃� �c�� − c���� .

�28�

Using Eq. �6�, this can alternatively be expressed by

�G�� =
1

vm„��
0�����,c�� − ��

0�����,c��… �29�

=
1

vm„��
i ����,c�� − ��

i �����,c�� " i �30�

showing that the local differences in chemical potential de-
termine the driving force for phase transformations. Due to
the quasiequilibrium constraint �Eq. �21�� this difference is
equal for all components.

C. Antisymmetric approximation of the multiphase-field
equations

In cases where the exact dynamics of multiple junctions
are of minor importance, Eq. �25� can be treated in the anti-
symmetric approximation of Ref. �10�. This formulation of
the phase-field equations has also been used in our former
model for binary alloys �1�. In particular a weighting func-
tion is introduced, to concentrate the thermodynamic driving
force to the center of the interface, as applied in standard
phase-field models, and the diffusive terms are weighted
with the phase-field variable of the counter phase. However
these multiphase-field equations cannot be rigorously de-
rived from a free energy formulation and there may be vio-
lations of the energy balance in triple junctions,

�̇� = �
�=1

	

M���
��	���2�� − ���2�� +
�2

2�2 ��� − ���

+

�

�
�����G��� . �31�
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IV. THE MULTICOMPONENT DIFFUSION EQUATIONS

A. Derivation from the free energy functional

For a multicomponent system, a set of k diffusion equa-
tions for all solute components is required which are in gen-
eral not independent but linked by cross terms. These equa-
tions are derived for the conserved compositions ci from the
free energy functional by a relaxation approach

ċi�x�,t� = vm2 � � j

n
Mch,ij���,c�� �

�F

�ci . �32�

The factor vm2, denoting the square of the mean molar vol-
ume, has been extracted for a definition of the mobility ma-
trix Mch,ij consistent with textbook notation. Using Eq. �18�
we can write in matrix and vector formulation

c�̇ = vm � Mch���,c�� � �̃� �33�

with the chemical mobility matrix Mch being a mixture entity
for the multiphase system dependent not only on the chemi-
cal composition but also on the phase fields. Defining Mch as
the sum of the individual phase-dependent chemical mobili-
ties M�

ch weighted by the respective phase fields and consid-
ering the constraint of quasiequilibrium �Eq. �21��, we arrive
at

c�̇ = vm � �
�=1

	

��M�
ch�c��� � �̃� with �

�=1

	

��M�
ch = Mch.

�34�

The chemical mobilities M�
ch are functions of the atomic

mobilities and the local phase compositions. They can be
evaluated using special models for different types of solute
solution. This is demonstrated in Ref. �12� for a ternary alloy.
To solve the diffusion equations numerically we replace the
gradient of diffusion potentials by the gradient of composi-
tions �mole fractions�:

c�̇ = ��
�=1

	

��D� � c�� with D� = vmM�
chT� �35�

and

T�
ij =

��̃�
i

�c�
j =

�2g�

�c�
i � c�

j . �36�

The matrix T comprises the derivatives of the diffusion
potentials with respect to the different compositions—
including cross-dependencies—and corresponds to the well-
known thermodynamic factor of Darken �11�, which can be
evaluated from Gibbs free energies. The chemical mobility
matrix M is in general strongly dependent on composition
and temperature. It can either be evaluated using thermody-
namic and mobility databases or approximated using Arrhen-
ius relations. Multiplication of these two matrices leads to
the diffusion matrix D, which is, in the case of a substitu-
tional system, a reduced diffusion matrix where the solvent
component 0 is eliminated by

D�
�0�ij = D�

ij − D�
j0. �37�

The unknown phase compositions c�� can be calculated
from the Gibbs energies g��c��� for a given mixture compo-
sition c� and a given phase state ���� by the quasiequilibrium
approach presented in Sec. II C. Alternatively, the phase
compositions can be taken from the extrapolation around
previously calculated quasiequilibrium data. A dedicated ex-
trapolation scheme is presented in Sec. V.

B. Equivalent formulations and comparison
with other phase-field models

Equation �35� is the starting point of our former
multiphase-field model �1�. However originally it was not
derived from the free energy functional but from a balance of
solute fluxes in the different phases and the phase composi-
tions were determined using extrapolated phase diagram
data. It will be shown in Sec. V that the phase diagram for-
mulation of the former model is a special extrapolation type
of the present model. For comparison with other models, it is
helpful to transform the diffusion equation �Eq. �35�� into
different equivalent formulations. Combined with the quasi-
equilibrium constraint �21� and �16� we get

c�̇ = �D�
�=1

	

�� � c�� �38�

with

D = vmMchT and Tij =
��̃i

�cj =
�2g

�ci � cj �39�

or, using the same mixture diffusion matrix D, we can also
write

c�̇ = �D � c� − �D�
�=1

	

c�� � ��. �40�

Although these two formulations are often used they have
the strong disadvantage that the mixture diffusion matrix D
cannot be evaluated easily. Comparing Eq. �38� with Eq.
�35�, we can see that D is linked to the phase diffusion ma-
trices �D�� by

D = �
�=1

	

��D�T�
−1T �41�

with

T�
ij =

��̃�
i

�c�
j =

�2g�

�c�
i � c�

j and Tij =
��̃i

�cj =
�2g

�ci � cj . �42�

The matrix T depends, in contrast to the purely thermody-
namically defined matrix T�, on the special formulation of
the free energy functional of the phase-field method.

In the limit of binary phase interactions, Eqs. �38� and
�40� are identical to the multicomponent diffusion equations
�6� by Cha et al. �6�, except for the factor vm which results
from a different definition of the composition. Cha et al. �6�
define new concentration variables to distinguish between
the different diffusion mechanisms of substitutional and in-
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terstitial components. Nevertheless, this results in the same
diffusion equations, since the specific diffusion potential is
implicitly included within the thermodynamic factor T. In
the limit of binary alloys, but for multiple phases, Eqs. �38�
and �40� equal equations �2.23� and �2.24� by Kim et al. �5�,
although no explicit definition of the mixture diffusion coef-
ficient is given there. For the reduced binary case it should

be D=vmMch �2g
��ci�2 =��=1

	 ��D�
�2g

��ci�2 /
�2g�

��c�
i �2 . Reduced to a bi-

nary two-phase system, the diffusion equation �40� is of the
same type as in the first model of Kim et al. �4�.

V. EXTRAPOLATION OF MULTIPHASE
MULTICOMPONENT DATA

All quasiequilibrium data which are required to solve the
diffusion and phase-field equations can generally be derived
from thermodynamic calculations using approved databases.
However, the quasiequilibrium condition must be solved in-
dividually for all locations x�, i.e., for all interface cells of the
numerical grid, in every numerical time step. To speed up
simulations, we suggest not to run thermodynamic calcula-
tions every time step, but only after a certain recalculation
interval �e.g., determined by a specified maximum tempera-
ture deviation� or if significant changes have occurred �such
as the change in number of local phases�, and extrapolate the
quasiequilibrium data inbetween.

A. Isothermal extrapolation

We start from a set of quasiequilibrium data including all
phase compositions �c��

*� and the driving forces ��G��
* � for

all pairwise phase interactions in each interface cell of the
numerical grid derived from a profound thermodynamic cal-
culation, where the free energy of the multicomponent alloy
is minimized numerically.

Due to the quasiequilibrium constraint the phase compo-
sitions of coexisting phases are not independent variables. If
any component of one phase is changed, all components of
all coexisting phases may be affected. Therefore, we chose
the compositions of an arbitrary reference phase c�� as inde-
pendent parameters and extrapolate all compositions c�� as
functions of c��. Using the abbreviations �c��=c��−c��

* and
�c��=c��−c��

* this is described by

�c�� = K���c�� with K��
ij = 	 �c�

j

�c�
i 


c
�
k�i,T

. �43�

The coefficients K��
ij can be evaluated from a set of thermo-

dynamic calculations where the compositions c�
i are varied

independently at constant temperature. Alternatively they can
be calculated directly from the free energies by

K�� = T�
−1T�, �44�

with

T�
ij =

�2g�

�c�
i � c�

j and T�
ij =

�2g�

�c�
i � c�

j . �45�

The matrices T� and T� corresponding to Darken’s thermo-
dynamic factors are already known from the evaluation of

the diffusion matrix �Eq. �35�� in Sec. IV A. Using Eq. �43�
all phase compositions �c��� can now be described by the
composition of the reference phase c��,

c�� = c��
* + K���c�� − c��

*� �46�

and the total composition is given by

c� = �
�=1

	

��c� �47�

= �
�=1

	

��K��c�� + �
�=1

	

���c��
* − K��c��

*� . �48�

It shall be noted that c�� itself is included within �c��� in Eq.
�47� and the corresponding matrix K�� in Eq. �48� is the unit
matrix. Solving Eq. �48� for c�� yields

c�� = Kc�
−1c� − c�c�

*

with

Kc� = �
�=1

	

��K�� and c�c�
* = �

�=1

	

���c��
* − K��c��

*� .

�49�

Using this equation, the composition of the reference phase
c�� can be extrapolated from the starting set of phase compo-
sitions �c��

*� if the phase-field parameters ���� or the total
composition c� undergo small variations. Afterwards, the
whole set �c��� can be evaluated from c�� by Eq. �46� or alter-
natively directly from Eq. �49� with changing reference
phases ��=��,

c�� = Kc�
−1c� − c�c�

*

with

Kc� = �
�=1

	

��K�� and c�c�
* = �

�=1

	

���c��
* − K��c��

*� .

�50�

If the phase-field equations �25� and the diffusion equa-
tion �35� are solved explicitly, the phase compositions c��

must be extrapolated once after solving the phase-field equa-
tions to be inserted into the diffusion equations and again
after solving the diffusion equations to extrapolate the driv-
ing force, which is done by

�G�� = �G��
* + �

i=1

k 	 ��G��

�c�
i 


c
�
j�i,T

�c�
i . �51�

Extrapolating the driving force for the pairwise interaction
��, the choice of the phase � is arbitrary, so that the driving
force can be alternatively extrapolated as a function of �c�

i ,

�G�� = �G��
* + �

i=1

k 	 ��G��

�c�
i 


c
�
j�i,T

�c�
i . �52�
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B. Nonisothermal extrapolation

Similar to Sec. V A, we start from a set of quasiequilib-
rium data including all phase compositions �c��

*� and the
driving forces ��G��

* � for all pairwise phase interactions in
each cell of the numerical grid. Additionally, we store
the corresponding temperature T*. Again, we chose the com-
positions of an arbitrary reference phase c�� as independent
parameters. All compositions �c��� are now extrapolated
as functions of c�� and of the temperature T. Using the abbre-
viations �c��=c��−c��

* and �c��=c��−c��
* and �T=T−T* this is

described by

�c�� = K���c�� + 	 �c�
i

�T



c�

�T with K��
ij = 	 �c�

j

�c��



c
�
j�i,T

�53�

The partition matrix K�� can be evaluated in the same way
as described in Sec. V A by isothermal variation of c�

i or by

K��=T�
−1T�. The coefficients � �c��

�T
�
c�

must be derived from a
quasiequilibrium calculation at a varied temperature, while
keeping the compositions of the reference phase constant.
Using Eq. �16� we finally obtain

c�� = Kc�
−1c� − c�c�

* with Kc� = �
�=1

	

��K�� �54�

and

c�c�
* = �

�=1

	

���c��
* − K��c��

* + 	 �c��

�T



c�

�T� .

The driving force �G�� is now extrapolated both as a func-
tion of compositions c�

i and temperature T using the abbre-
viations �c�

i =c�
i −c��

*,i and �T=T−T*,

�G�� = �G��
* + �

i=1

k 	 ��G��

�c�
i 


c
�
j�i,T

�c�
i + 	 ��G��

�T



c�

�T .

�55�

Again we can alternatively extrapolate the driving force as a
function of c�

i :

�G�� = �G��
* + �

i=1

k 	 ��G��

�c�
i 


c
�
j�i,T

�c�
i + 	 ��G��

�T



c�

�T .

�56�

C. Multibinary extrapolation

Evaluation and inversion of the matrix Kc� for each
numerical grid cell with coexisting multiple phases in every
time step is still very time intensive and requires a
high volume of memory. For many alloys �or single alloy
components� a reduced extrapolation, neglecting cross
dependencies between the solute components is an adequate
approximation. Since in this case only the binary interactions
of the multiple solute components with the solvent compo-
nent selected are considered, we call this a multibinary
extrapolation.

If cross dependencies are neglected, the partition matrices
K�� in Eq. �54� are reduced to diagonal matrices and the
phase compositions can be evaluated separately for each
component,

c�
i =

c − �
�=1

	

���c�
i* − K��

ii c�
i* + 	 �c�

i

�T



c�

�T�
�
�=1

	

��K��
ii

. �57�

Again, the isothermal partition coefficients K��
ii can be evalu-

ated by thermodynamic calculations which vary c�
i or alter-

natively by the second derivatives of the free energies,

K��
ii = 	 �c�

i

�c�
i 


c
�
j�i,T

=

�2g�

��c�
i �2

�2g�

��c�
i �2

. �58�

An alternative way of evaluating the multibinary partition
coefficients uses the extrapolation of the driving force �G��,

K��
ii =

	 ��G��

�c�
i 


c
�
j�i,T

	 ��G��

�c�
i 


c
�
j�i,T

. �59�

This approximation is used for the extrapolation in phase
diagram formulation which will be presented in the next sec-
tion. Using Eq. �27�, we can see that Eq. �59� is identical to
Eq. �58� if cross terms are truly negligible.

D. Multibinary extrapolation in phase diagram formulation

Most theoretical approximations of microstructural quan-
tities, such as dendrite or eutectic spacings, are based on
phase diagram data �partition coefficients, composition
slopes�. Also for many technical applications, phase dia-
grams are still the most common way to consider alloy ther-
modynamics. We therefore found it helpful to transform the
extrapolation scheme for free energy data in an equivalent
phase diagram formulation. This not only allows direct com-
parison but also combination of thermodynamic data from
free energy databases with phase diagram data. We start with
a set of equilibrium compositions �c�

*� and ��G��
* =0�. Using

the slopes of the equilibrium lines �m��
i � and �m��

i �,

m��
i = 	 �T

�c�
i 


c
�
j�i

, m��
i = 	 �T

�c�
i 


c
�
j�i

�60�

and the entropies of transformation ��s��� and ��s���,

�s�� = 	 ��G��

�T



c�

, �s�� = 	 ��G��

�T



c�

, �61�

the driving forces �G�� and �G�� are extrapolated by

�G�� = �
i=1

k

�s��m��
i �c�

i + �s���T ,
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�G�� = �
i=1

k

�s��m��
i �c�

i + �s���T . �62�

From the constraint �G��=−�G�� we obtain

�
i=1

k

�s��m��
i �c�

i + �s���T = − �
i=1

k

�s��m��
i �c�

i − �s���T .

�63�

If we neglect cross dependencies and distribute �s���T
equally to all components, we arrive at an extrapolated qua-
siequilibrium constraint separately for each component,

�c�
i = K��

ii 	�c�
i +

�T

km��
i 
 −

�T

km��
i with K��

ii = −
�s��m��

i

�s��m��
i

�64�

=K��
ii �c�

i +
1

km��
i 	1 +

�s��

�s��

�T . �65�

Combining this with Eq. �16� we finally have

c�
i =

c − �
�=1

	

���c�
i* − K��

ii c�
i* +

1

km��
i 	1 +

�s��

�s��

�T�

�
�=1

	

��K��
ii

�66�

For many systems �s��=−�s�� is an adequate approxi-
mation. In this case, Eqs. �64� and �66� are reduced to

�c�� = K� ���c�� with K��
i =

m��
i

m��
i , �67�

c�� =

	c� − �
�=1

	

���c��
* − K��c��

*�

�
�=1

	

��K��

. �68�

This is the equation we used in our first phase diagram
based, multiphase-field model for alloys �1�. It shall be em-
phasized that the partition coefficients do not give the parti-
tion between the phase compositions themselves, as defined
in the classical phase diagram description, but between the
deviations from the extrapolation points of the phase compo-
sitions c��

* only. The partition coefficients vary depending on
the starting composition which should be close to the actual

composition. The extrapolation in phase diagram formulation
thereby is not limited to dilute systems.

It should be remembered, that the approximation
�s��=−�s�� is not allowed for demixing transformations. If
the equilibrium slopes m��

i and m��
i have different signs, the

partition coefficient K��
i in Eq. �68� becomes negative, which

is not allowed in this formulation. In binary alloys this is
always compensated for by equal signs of �s�� and �s�� in
Eq. �66�, which, for example, often occur between two solid
phases during eutectic transformation. If the partition coeffi-
cient for multicomponent alloys K��

i becomes negative even
though �s�� and �s�� are considered individually, this is an
indication of nonnegligible cross dependencies between the
components. In this case, the multibinary approximation can-
not be applied in the present form.

VI. CONCLUSIONS

A free energy functional with separate interfacial and
chemical contributions has been formulated for multicompo-
nent multiphase systems. From this functional, a set of
phase-field equations and a set of diffusions equations have
been derived. In contrast to the classical alloy approach for
phase-field models �2�, the chemical free energy does not
depend on interfacial width, which can be regarded as a free
mathematical entity for numerical convenience. However,
the assumption of local quasiequilibrium requires complex
thermodynamic calculations. This is done locally for each
grid point by numerical minimization of the free energy
based on Calphad databases. To enhance computational effi-
ciency, a local extrapolation scheme has been proposed
which reduces the frequency of thermodynamic calculations.
A restricted extrapolation which neglects interactions
between the solute components, has been shown to repro-
duce the previous version of the multiphase-field model
without restriction to dilute solutions. Moreover, it has been
shown that the model reproduces the diffusion equations of
Cha et al. �6� in the limit of multicomponent systems with
two-phase interactions and the diffusion equations of Kim et
al. �5� in the limit of binary alloys but multiple phases, ex-
cept for slight differences due to the different definition of
compositions.
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